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1. Introduction

D-branes have been playing an important role in understanding nonperturbative aspects

of string theory. In previous works [1, 2], we studied how to describe D-branes in closed

string field theory. The closed string field theory that we consider is the OSp invariant

string field theory for bosonic strings [3]. (See also [4 – 7].) We constructed the states with

an arbitrary number of coincident D-branes and ghost D-branes [8] in this closed string

field theory. We can calculate disk amplitudes using these states, and the results coincide

with those of first quantized string theory [2].

In this paper, we extend our construction into the case where the D-branes are lo-

cated at different points from each other in the space-time. Using such a state with two

D-branes, we evaluate annulus amplitudes. We show that they coincide with the usual

annulus amplitudes including the normalizations. This fact yields another evidence for our

construction.

The organization of this paper is as follows. In section 2, we generalize our previous

construction [2] to propose the states for N parallel Dp-branes that are located at different

points from each other. We show that these states are BRST invariant in the leading order

in the regularization parameter ǫ. In section 3, we compute annulus amplitudes and show

that the results in first quantized string theory are reproduced. Section 4 is devoted to

conclusions. In appendix A, we present details of the calculation.
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2. States with parallel D-branes at different points

The BRST invariant state corresponding to one flat Dp-brane sitting at Xi = Y i (i =

p+ 1, . . . , 25) is constructed in [2]1 as

|D+(Y )〉〉 = λ

(
∫

dζŌD (ζ, Y )

)

|0〉〉 , (2.1)

where

ŌD(ζ, Y ) = exp

[

A

∫ 0

−∞

dr
eζαr

αr

ǫ
r〈B0(Y )|ψ̄〉r +Bζ2

]

,

A =
(2π)13

(8π2)
p+1
2
√
π
,

B =
(2π)13ǫ2(− ln ǫ)

p+1
2

16
(

π
2

)
p+1
2

√
πg

. (2.2)

Here |B0(Y )〉 ≡ e−ipiY
i |B0〉 denotes the boundary state for the Dp-brane located at Xi =

Y i and |B0〉 = |B0(0)〉 is given in [2]. As in [2], we introduce the state

|B0(Y )〉T = e
−

T
|α|

(L0+L̃0−2)|B0(Y )〉 , (2.3)

and use |B0(Y )〉ǫ with 0 < ǫ ≪ 1 as a regularized version of |B0(Y )〉.
∫

dζŌD can be

considered as an operator which creates the D-brane by acting on the second quantized

vacuum |0〉〉. With string field |ψ̄〉 exponentiated, this operator has the effect of inserting

boundaries in the worldsheet.

We would like to show that the states corresponding to N such Dp-branes located at

Xi = Y i
(I) (I = 1, . . . , N) can be given simply as

|DN+;Y(I)〉〉 = λN+

N
∏

I=1

(
∫

dζIŌD

(

ζI , Y(I)

)

)

|0〉〉 , (2.4)

if (Y i
(I) − Y i

(J))
2 6= 0 for I 6= J . In contrast to the case of coincident D-branes studied

in [2], we just have to consider the product of
∫

dζŌD. Indeed, we can show that as long

as (Y i
(I) − Y i

(J))
2 6= 0 for I 6= J , the states (2.4) are BRST invariant in the leading order

in the regularization parameter ǫ. The proof goes exactly as in [2]. One crucial difference

from the coincident case is that in the limit of T = ǫ→ 0 the string vertex

〈V1(3);Y, Y
′;T | ≡

∫

d′1d′2 〈V3(1, 2, 3)|B0(Y )〉T1 |B0(Y
′)〉T2 (2.5)

is suppressed by ǫ
(∆Y i)2

4π2 with ∆Y i ≡ Y i − Y ′i, compared with 〈V1(3);T | evaluated in [2].

Because of this suppression, the interaction between ŌD at different points can be ignored

in the leading order in ǫ and the states (2.4) become BRST invariant.

1In this paper, the notations for the OSp invariant string field theory are the same as those used in [2],

unless otherwise stated.
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Y i Y’ i

(a)

k

φ ν∼

 1〈B0(Y)

(b)

 B0(Y’)〉 2

iπτ∼ ρ

iπ

-iπ

iπτ∼ 0

Figure 1: (a) The annulus diagram with one closed string external state φ. (b) The ν̃ coordinate

on the worldsheet of the string diagram in (a). At ν̃ = iπτ̺̃, the vertex operator Vφ corresponding

to the state φ is inserted.

The details of the calculation of 〈V1(3);Y, Y
′;T | are presented in appendix A. The

suppression stated above is intuitively obvious, because the D-branes sit at different points.

The suppression factor originates from the factor e−Scl , where Scl is the classical action

given in eq. (A.11) on the worldsheet depicted in figure 3 in appendix A. Indeed, using the

results in [9, 10, 2], we find that in the T = ǫ→ 0 limit

e−Scl ∼
(

ǫ

4α sin(−2πV3)

)

(∆Y i)2

4π2

. (2.6)

In addition to the BRST invariance mentioned above, it is easy to see that using the

states (2.4) one can calculate the disk amplitudes in the same way as in [2] and obtain

those for the parallel D-branes. Thus we may regard the states (2.4) as the ones where

such D-branes exist. We can also generalize the states (2.4) to include ghost D-branes [8],

as is carried out in [2].

3. Annulus amplitudes derived from D-brane states

3.1 Amplitudes with one closed string external line

Using the states with D-branes constructed in the last section, we would like to calculate

scattering amplitudes involving the strings whose worldsheets have boundaries attached to

D-branes contained in these states. In this paper, we evaluate annulus amplitudes. Let us

first consider the annulus amplitudes with one closed string external line as described in

figure 1 (a), in the situation where the annulus is suspended between two parallel Dp-branes

located at Xi = Y i and Y ′i. The S-matrix element for this process can be obtained from

the following correlation function involving these two Dp-branes:

〈〈Oφ(t, k)〉〉
D2+(Y ;Y ′) ≡

〈〈0|Oφ(t, k)|D2+;Y, Y ′〉〉
〈〈0|D2+;Y, Y ′〉〉 , (3.1)

– 3 –
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where t > 0. Oφ(t, k) is the observable corresponding to the external state φ defined [11]

as

Oφ(t, k) =

∫

dr
1

αr
r

(

C,C̄〈0| ⊗ X〈primaryφ; k|
)

|Φ(t)〉r , (3.2)

where |primaryφ; k〉X is a normalized Virasoro primary state with momentum k, corre-

sponding to a particle with mass M . In the correlation function (3.1) we should evaluate

the contribution GφDD′(k) from the annulus diagram suspended between the two Dp-branes

contained in |D2+;Y, Y ′〉〉. This is an order O(g) term in the correlation function (3.1).

Perturbatively, for the ζI (I = 1, 2) integrations in eq. (2.4) the saddle point method

becomes a good approximation [1, 2] and yields

∣

∣D2+;Y, Y ′
〉〉

≃ λ′ exp

[

A

∫ 0

−∞

dr1
αr1

ǫ
r1
〈B0(Y )|ψ̄〉r1

]

exp

[

A

∫ 0

−∞

dr2
αr2

ǫ
r2
〈B0(Y

′)|ψ̄〉r2

]

|0〉〉 ,
(3.3)

where λ′ = − π
B
λ2+. Using these, we obtain

GφDD′(k) = −3!A2

∫

∞

0

d1

α1

∫

∞

0

d2

α2

∫ 0

−∞

d3

α3

∫ t

0
dT

2g

3
〈V 0

3 (1, 2, 3)|

×|B0(Y )〉T1 |B0(Y
′)〉T2 e

t−T
α3

(L
(3)
0 +L̃

(3)
0 −2)

(

|primaryφ; k〉X ⊗ |0〉C,C̄

)

3
, (3.4)

where T corresponds to the proper time of the three-string interaction vertex. We have

performed the Wick rotation so as to make the proper time Euclidean. Using eqs. (A.2)

and (A.4), the right hand side of eq. (3.4) can be rewritten as

GφDD′(k) = −gA2

∫

∞

0
dα

∫ α

0
dα1

∫ t

0
dT

∫

d26p3

(2π)26
idπ̄

(3)
0 dπ

(3)
0 K1(3;Y, Y

′;T )

×(2π)p+1δp+1
N (p3)〈V 0

1,LPP(3);Y, Y ′;T |e− t−T
α

(L
(3)
0 +L̃

(3)
0 −2) ×

×
(

|primaryφ; k〉X ⊗ |0〉C,C̄

)

3
, (3.5)

where α = −α3, K1(3;Y, Y
′;T ) is a factor given in eq. (A.12) and δp+1

N (p3) denotes the

delta function of the momentum in the directions along the Dp-branes. In the following,

we would like to rewrite the right hand side of eq. (3.5) into a form which can be compared

with the usual annulus amplitude.

LPP vertex 〈V 0

1,LPP
(3); Y, Y ′; T |. 〈V 0

1,LPP(3);Y, Y ′;T | can be expressed as a direct

product of a state in the C, C̄ Fock space and one in the X Fock space, namely

C,C̄〈V 0
1,LPP(3);Y, Y ′;T | ⊗ X〈V 0

1,LPP(3);Y, Y ′;T | . (3.6)

Since C,C̄〈V 0
1,LPP(3);Y, Y ′;T | has the form

C,C̄〈V 0
1,LPP(3);Y, Y ′;T | = C,C̄〈0|e−

T
α

2iπ
(3)
0 π̄

(3)
0 + (terms quadratic or linear in oscillators) , (3.7)

the contribution from the C, C̄ sector to GφDD′(k) in eq. (3.5) becomes
∫

idπ̄
(3)
0 dπ

(3)
0 C,C̄〈V 0

1,LPP(3);Y, Y ′;T |0〉C,C̄ e
−

t−T
α

2iπ
(3)
0 π̄

(3)
0 =

2t

α
. (3.8)

– 4 –
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From the definition of the LPP vertex [12], one can see that the overlap

∫

d26p3

(2π)26
(2π)p+1δp+1

N (p3)X〈V 0
1,LPP(3);Y, Y ′;T |primaryφ; k〉X,3 (3.9)

is written in terms of a correlation function on the annulus. In order to express the corre-

lation function using the boundary states, it is convenient to use the worldsheet coordinate

ν̃ depicted in figure 1 (b), which is related to the coordinate ν in figure 3 (b) by

ν̃ =
2π

−iτ ν . (3.10)

In this coordinate, the annulus diagram in figure 1 (a) is described as a cylinder of circum-

ference 2π. The length of the cylinder is −iπτ̃ and the vertex operator corresponding to

the external state is inserted at

ν̃ =
2π

−iτ V3 = iπτ̺̃ , (3.11)

where

τ̃ = −1

τ
, ̺ = −2V3 =

α1

α
. (3.12)

The overlap (3.9) can be written as a correlation function2 on the cylinder with the coor-

dinate ν̃ as follows:

∫

d26p3

(2π)26
(2π)p+1δp+1

N (p3)X〈V 0
1,LPP(3);Y, Y ′;T |primaryφ; k〉X,3

= N(τ̃)

∣

∣

∣

∣

∂w3

∂ν̃
(iπτ̺̃)

∣

∣

∣

∣

−(k2+M2+2)

×X〈B0(Y
′)|eiπτ̺̃(LX

0 +L̃X
0 −2) Vφ e

iπτ̃ (1−̺)(LX
0 +L̃X

0 −2)|B0(Y )〉X . (3.13)

Here LX
0 and L̃X

0 are the zero-modes of the Virasoro generators and |B0(Y )〉X is the

boundary state in the X sector given in [2]. Vφ denotes the vertex operator of weight

(1
2 (k2 + M2 + 2), 1

2(k2 + M2 + 2)) corresponding to the state |primaryφ; k〉X . N(τ̃) is a

normalization factor independent of φ, which can be fixed by considering the case Vφ = 1,

and we obtain

N(τ̃ ) = η(τ̃ )24
∞
∏

n=1

(

1 − e2πiτ̃n
)2
eScl(2π)26−(p+1)(−iτ̃ )13− p+1

2 . (3.14)

By using eqs. (3.10), (A.3) and (A.6), we also obtain

∂w3

∂ν̃
(iπτ̺̃) =

−iτ
2π

∂w3

∂ν

∣

∣

∣

∣

ν=V3

= −iτ η(τ)3

ϑ1(2V3|τ)
e

T
α . (3.15)

2In the expression X〈B0(Y
′)|eiπτ̺̃(LX

0
+L̃X

0
−2) Vφ eiπτ̃(1−̺)(LX

0
+L̃X

0
−2)|B0(Y )〉X , the integrations over the

zero modes p are included in the definition of the inner product, as is usual in CFT.

– 5 –
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Integration measure. In eq. (3.5), we should change the integration variables (α1, T )

to (̺, τ̃). For a fixed α, eq. (3.12) implies that

dα1 = αd̺ , dT =
∂T

∂τ̃
dτ̃ =

∂T

∂τ

1

τ̃2
dτ̃ . (3.16)

We find that ∂T/∂τ becomes
∂T

∂τ
= − i

4π
cI , (3.17)

where cI is given in eq. (A.13). This can be derived from eqs. (A.6), (A.7) and (A.13) as

follows:

∂T

∂τ
=
∂ρ

∂ν
(ν−I )

∂ν−I
∂τ

+ α
∂

∂τ
ln
ϑ1(ν + V3|τ)
ϑ1(ν − V3|τ)

∣

∣

∣

∣

ν=ν−
I

= α
∂

∂τ
ln
ϑ1(ν + V3|τ)
ϑ1(ν − V3|τ)

∣

∣

∣

∣

ν=ν−
I

= − i

4π
α

[

∂2
νϑ1(ν

−

I + V3|τ)
ϑ1(ν

−

I + V3|τ)
− ∂2

νϑ1(ν
−

I − V3|τ)
ϑ1(ν

−

I − V3|τ)

]

= − i

4π
cI . (3.18)

Here we have used the fact that the theta function ϑ1(ν|τ) satisfies the heat equation,

∂

∂τ
ϑ1(ν|τ) = − i

4π

∂2

∂ν2
ϑ1(ν|τ) . (3.19)

S-matrix element. Collecting all these results, we can obtain

GφDD′(k) = −4π2gA2

∫

∞

0
dα

t

α2
e−

t
α

(k2+M2)

∫ 1

0
d̺

∫ τ̃0(α,̺)

0
dτ̃ τ̃

∣

∣

∣

∣

∣

e−iπ̺2τ̃η(τ̃)3

ϑ1(̺τ̃ |τ̃ )

∣

∣

∣

∣

∣

−(k2+M2)

×
∞
∏

n=1

(

1 − e2πinτ̃
)2

X〈B0(Y
′)|eiπτ̺̃(LX

0 +L̃X
0 −2) Vφe

iπτ̃(1−̺)(LX
0 +L̃X

0 −2)|B0(Y )〉X ,

(3.20)

where τ̃0(α, ̺) is the value of τ̃(= τ̃(T, α, ̺)) when T = t: τ̃0(α, ̺) = τ̃(t, α, ̺).

In order to obtain the S-matrix element SφDD′ for the process we are considering, we

need look for the singular behavior of GφDD′(k) near the mass-shell of the external state,

namely k2 +M2 ∼ 0. As explained in [11], such singularity comes from the region α ∼ 0

in the integration over α, and we find

GφDD′(k) ∼ −4π2gA2 1

k2 +M2

∫ 1

0
d̺

∫ i∞

0
dτ̃ τ̃

∞
∏

n=1

(

1 − e2πinτ̃
)2

×X〈B0(Y
′)|eiπτ̺̃(LX

0 +L̃X
0 −2) Vφ e

iπτ̃(1−̺)(LX
0 +L̃X

0 −2)|B0(Y )〉X . (3.21)

Here we have used the relation

lim
α→0

τ̃0(α, ̺) = i∞ . (3.22)

– 6 –
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Y i Y’ i

k

k1 k2

Figure 2: The scattering process near the poles from the tachyons of the closed strings exchanged

between the two D-branes in figure 1 (a). The three solid lines connecting with each other indicate

tachyon propagations.

Thus we obtain the S-matrix element SφDD′ ,

SφDD′(k) = −4π2igA2

∫ 1

0
d̺

∫ i∞

0
dτ̃ τ̃

∞
∏

n=1

(

1 − e2πinτ̃
)2

×X〈B0(Y
′)|eiπτ̺̃(LX

0 +L̃X
0 −2) Vφ e

iπτ̃(1−̺)(LX
0 +L̃X

0 −2)|B0(Y )〉X , (3.23)

where the momentum kµ̂ (µ̂ = 0, . . . , 25) of the vertex operator Vφ is subject to the on-shell

condition: k2+M2 = 0. Here we have performed the Wick rotation to make the space-time

signature Lorentzian.

In this form, it is obvious that SφDD′ is proportional to the S-matrix element in first

quantized string theory. The factor
∏

∞

n=1

(

1 − e2πinτ̃
)2

coincides with the ghost contribu-

tion to the partition function. As is described in figure 1 (b), the worldsheet of the process

we are considering is a one-punctured cylinder. In eq. (3.23), the S-matrix element SφDD′

is expressed as an integral over the moduli space of the one-punctured cylinder with the

correct integration measure τ̃ dτ̃ d̺. We notice that in this integral the moduli space is

covered completely and only once.

3.2 Factorization of S-matrix element

Let us check that the S-matrix element in eq. (3.23) has the correct normalization. This

can be done by considering the S-matrix element SφDD′ in the simplest case where Vφ

corresponds to the tachyon:

Vφ = ◦

◦ eik·X ◦

◦ . (3.24)

Here ◦

◦

◦

◦ denotes the normal ordering of the oscillators. We examine the behavior of SφDD′

at the poles from the tachyons of the closed strings exchanged between the two D-branes

in figure 1 (a). This corresponds to the scattering process sketched in figure 2. In order

to obtain the singular behaviour, we perform the Fourier transformation of the S-matrix

– 7 –
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element SφDD′ with respect to Y i and Y ′i, and then put the conjugate momenta k1 and

k2 close to the mass-shell of the tachyon. In the region where k2
1 ∼ 2 and k2

2 ∼ 2, SφDD′

becomes

SφDD′ ∼
∫

d26k1

(2π)26

∫

d26k2

(2π)26
STD(−k1;Y )

−i
k2
1 − 2

STTT (k, k1, k2)
−i

k2
2 − 2

STD(−k2;Y
′) ,

(3.25)

where

STTT (k, k1, k2) = i4g(2π)26δ26(k + k1 + k2) ,

STD(k1;Y ) = iA(2π)p+1δp+1
N (k1)e

ik1,iY
i

. (3.26)

In this equation, STTT (k, k1, k2) is the tree amplitude for three closed string tachyons

with momenta k, k1 and k2, and STD(k1;Y ) is the coupling of the Dp-brane located at

Xi = Y i to a closed string tachyon with momentum k1.
3 Eq. (3.25), therefore, implies

that the factorization occurs in the right way in SφDD′ and thus SφDD′ has the correct

normalization.

3.3 More general amplitudes

It is easy to generalize the calculation above and consider more general annulus amplitudes.

For example, let us consider the amplitudes with the annulus ending on the same D-brane.

In this case the computations are the same as those in the case of two D-branes, except that

this time the S-matrix elements are deduced from the contributions of the term quadratic

in the boundary state contained only in a single ŌD. Therefore the normalizations of the

S-matrix elements become half of those in the case of two D-branes. Thus we obtain the

correct normalizations.

We can also calculate the annulus amplitudes with any number of closed string inser-

tions. We can compute such amplitudes by using the fact that the three-string interaction

vertex overlapped by an external state reduces to the vertex operator for the state, when

the external state is close to the mass-shell [2]. Therefore the computation comes down to

the one we have done above. It is easy to check that the resulting S-matrix elements are

expressed as an integral over the moduli space with the appropriate measure and have the

correct normalizations.

4. Conclusions

In this paper, we construct states corresponding to N parallel Dp-branes located separately

from each other. We show that these states are BRST invariant in the leading order in

ǫ. Using these states, we can calculate annulus amplitudes. We show that usual annulus

amplitudes are reproduced. The analyses in this paper provide another evidence for our

construction of the D-brane states in the OSp invariant closed string field theory.

3In [2], we showed that STD can be reproduced by the states (2.1) with one D-brane.

– 8 –
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3

2

1

T

ν

-1/2

ν
I

ν
I
+

-

V3

τ/2

−τ/2

0

(a) (b)

ρ=iπα

B0(Y’)2

1

ρ=ρI

B0(Y)

ρ

ρ=0

1
B0(Y)

ρ=iπα1

B0(Y’) 2

Figure 3: (a) The worldsheet for the string diagram corresponding to the vertex (A.2). The

coordinate ρ (Re ρ ≥ 0, −πα ≤ Im ρ ≤ πα) is introduced on this worldsheet. (b) The rectangle on

the ν-plane related to the worldsheet in (a) by the Mandelstam mapping (A.6).
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A. Details of calculation of 〈V1(3); Y, Y ′; T |

In this appendix, we present details of the calculation of the string vertex (2.5).

The vertex (2.5) is expressed as

〈V1(3);Y, Y
′;T | = 〈V 0

1 (3);Y, Y ′;T |C(ρI)P3 , (A.1)

where

〈V 0
1 (3);Y, Y ′;T | ≡

∫

d′1 d′2 δ(1, 2, 3)
|µ(1, 2, 3)|2
α1α2α3

123〈0|eE(1,2,3)|B0(Y )〉T1 |B0(Y
′)〉T2 . (A.2)

As carried out in [2], we introduce the complex coordinate ρ on the worldsheet for the

string diagram corresponding to the vertex (A.2) depicted in figure 3 (a). ρI in eq. (A.1)

denotes the interaction point on the ρ-plane. The external closed string corresponds to the

string 3. The region of the worldsheet corresponding to the propagation of this string is

|w3| ≤ 1, where

ρ = α3 lnw3 + T . (A.3)

The vertex 〈V 0
1 (3);Y, Y ′;T | takes the form

〈V 0
1 (3);Y, Y ′;T | = 2δ(α1 + α2 + α3)(2π)p+1δp+1

N (p3)

×K1(3;Y, Y
′;T )〈V 0

1,LPP(3);Y, Y ′;T | , (A.4)
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where K1(3;Y, Y
′;T ) is the partition function of the CFT on the ρ-plane endowed with the

metric ds2 = dρdρ̄ [13]. 〈V 0
1,LPP(3);Y, Y ′;T | is the LPP vertex [12] of the form

〈V 0
1,LPP(3);Y, Y ′;T | = 3〈0|eE(3) , (A.5)

where E(3) consists of terms linear or quadratic in α
M(3)
n and α̃

M(3)
n (n ≥ 0).

Mandelstam mapping. In order to evaluate the string vertex (2.5), we use the Man-

delstam mapping introduced in [2],

ρ(ν) = α ln
ϑ1(ν + V3|τ)
ϑ1(ν − V3|τ)

, (A.6)

where α ≡ α1 + α2 = −α3, V3 = −α1
2α

and ϑ1(ν|τ) is a Jacobi theta function. This is

the mapping between the ρ-plane and the rectangle on the complex ν-plane defined by

−1
2 ≤ Re ν ≤ 0 and − τ2

2 ≤ Im ν ≤ τ2
2 (figure 3 (b)). Here τ = iτ2 (τ2 ∈ R, τ2 ≥ 0) is the

modulus of the annulus and the identification ν ∼= ν + τ should be made. The interaction

points ν±I on the ν-plane and the modulus T on the ρ-plane satisfy

dρ

dν
(ν±I ) = 0 , T = Reρ(ν−I ) = ρ(ν−I ) + 2πiαV3 . (A.7)

Partition function K1(3; Y, Y ′; T ). From the Mandelstam mapping (A.6), one can

find that the boundary conditions imposed on the worldsheet variables Xi(ν, ν̄) (i = p +

1, . . . , 25) on the ν-plane are

Xi(ν, ν̄)
∣

∣

Re ν=−
1
2

= Y i , Xi(ν, ν̄)
∣

∣

Re ν=0
= Y ′i , Xi(ν + τ, ν̄ + τ̄) = Xi(ν, ν̄) , (A.8)

and the other worldsheet variables Xµ(ν, ν̄) (µ = 26, 1, . . . , p), C(ν, ν̄) and C̄(ν, ν̄) obey the

same boundary conditions as those in the case considered in [2]. Therefore, the classical

configurations XN
cl (ν, ν̄) for the worldsheet variables around which the quantum fluctua-

tions X̃N (ν, ν̄) should be considered are

Xi
cl(ν, ν̄) = Y ′i − (ν + ν̄)∆Y i , Xµ

cl(ν, ν̄) = 0 , Ccl(ν, ν̄) = C̄cl(ν, ν̄) = 0 . (A.9)

Dividing XN (ν, ν̄) as XN (ν, ν̄) = XN
cl (ν, ν̄) + X̃N (ν, ν̄), we compute the annulus par-

tition function Z(τ,∆Y ) on the ν-plane (other than the effects of the puncture ν = V3 and

the interaction points ν = ν±I ). We find that

Z(τ,∆Y ) =

∫

[dX] e−S[X] = e−SclZ̃(τ) , (A.10)

where S[X] is the worldsheet action and Scl denotes its classical value given by

S[X] ≡ 1

2π

∫ 0

−
1
2

d(Re ν)

∫

τ2
2

−
τ2
2

d(Im ν) ∂νX
N∂ν̄X

MηNM ,

Scl ≡ S[Xcl] = −i τ
4π

(

∆Y i
)2
, (A.11)
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and Z̃(τ) is the contribution of the fluctuations to the partition function. One can find

that Z̃(τ) equals to the partition function in the case where Y i = Y ′i = 0. Combined with

eq. (A.10), this implies that

K1(3;Y, Y
′;T ) = e−SclK1(3;T ) = e−Scl

(2π)p+1

(2π)23
e

2T
α

(−iτ) p+1
2 η(τ)18α2 cI ϑ1(2V3|τ)2

, (A.12)

where K1(3;T ) = K1(3; 0, 0;T ) is evaluated in [2] and cI is

cI ≡ d2ρ

dν2
(ν−I ) = α

(

∂2
νϑ1(ν

−

I + V3|τ)
ϑ1(ν

−

I + V3|τ)
− ∂2

νϑ1(ν
−

I − V3|τ)
ϑ1(ν

−

I − V3|τ)

)

. (A.13)

LPP vertex 〈V 0

1,LPP
(3); Y, Y ′; T |. The LPP vertex 〈V 0

1,LPP(3);Y, Y ′;T | introduced in

eq. (A.5) can be determined by the equations
∫

d′3 〈V 0
1,LPP(3);Y, Y ′;T |XN(3)(w3, w̄3)|0〉3(2π)26δ26(p3)iπ̄

(3)
0 π

(3)
0

=
〈XN (ν3, ν̄3)〉
Z(τ,∆Y )

≡ 1

Z(τ,∆Y )

∫

[dX]XN (ν3, ν̄3) e
−S[X] = XN

cl (ν3, ν̄3) ,

∫

d′3 〈V 0
1,LPP(3);Y, Y ′;T |XN(3)(w3, w̄3)X

M(3)(w′

3, w̄
′

3)|0〉3(2π)26δ26(p3)iπ̄
(3)
0 π

(3)
0

=
〈XN (ν3, ν̄3)X

M (ν ′3, ν̄
′
3)〉

Z(τ,∆Y )
≡ 1

Z(τ,∆Y )

∫

[dX]XN (ν3, ν̄3)X
M (ν ′3, ν̄

′

3) e
−S[X]

= XN
cl (ν3, ν̄3)X

M
cl (ν ′3, ν̄

′

3) +GNM
rectan.(ν3, ν̄3; ν

′

3, ν̄
′

3) , (A.14)

where ν3 and ν ′3 are the points on the ν-plane corresponding to the points w3 and w′
3

(|w3|, |w′
3| < 1), and GNM

rectan.(ν, ν̄; ν
′, ν̄ ′) are the two-point functions of XN (ν, ν̄) given in [2]

in the case of Y i = Y ′i = 0. This yields

〈V 0
1,LPP(3);Y, Y ′;T | = 〈V 0

1,LPP(3);T |ei
P∞

n=0(N̄h
n,iα

i(3)
n +N̄a

n,iα̃
i(3)
n ) , (A.15)

where 〈V 0
1,LPP(3);T | = 〈V 0

1,LPP(3); 0, 0;T | is the LPP vertex computed in [2], and the

Neumann coefficients N̄h
n,i and N̄a

n,i are

N̄h
n,i =

(

N̄a
n,i

)∗
=

1

n

∮

V3

dν

2πi
(w3(ν))

−n ∂νX
i
cl(ν) = −∆Y i

n

∮

V3

dν

2πi
(w3(ν))

−n for n ≥ 1 ,

N̄h
0,i + N̄a

0,i = Xi
cl(V3, V3) = −2V3Y

i + (1 + 2V3)Y
′i . (A.16)

Collecting all the results obtained in the above, we have

〈V 0
1 (3);Y, Y ′;T | = e−Scl〈V 0

1 (3);T |ei
P∞

n=0(N̄
h
n,iα

i(3)
n +N̄a

n,iα̃
i(3)
n ) , (A.17)

where 〈V 0
1 (3);T | = 〈V 0

1 (3); 0, 0;T | is evaluated in [2].

Ghost field insertion. Finally, we consider the effect of the insertion of the ghost field

in the vertex 〈V 0
1 (3);Y, Y ′;T | to obtain 〈V1(3);Y, Y

′;T |. This is the same as that obtained

in [2]. Eventually, we obtain

〈V1(3);Y, Y
′;T | (A.18)

= e−Scl〈V 0
1 (3);T |i

∞
∑

n=0

(

Mrectan.
h
nγ

(3)
n +Mrectan.

a
nγ̃

(3)
n

)

e
i

P∞
n=0

“

N̄h
n,iα

i(3)
n +N̄a

n,iα̃
i(3)
n

”

P3 .
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Limit of T = ǫ → 0. In the T = ǫ→ 0 limit, N̄h
n,i and N̄a

n,i for n ≥ 1 become

N̄h
n,i, N̄

a
n,i ≃ i

∆Y i

n

e−n ǫ
α

2π

(

ein2πV3 − e−in2πV3
) (

1 + O(ǫ2)
)

, (A.19)

and thus finite. Combined with eq. (2.6), this yields the suppression stated in section 2,

and one can deduce that the states (2.4) are BRST invariant in the leading order in ǫ.

In this limit, eq. (A.18) becomes the idempotency equation [14] in the OSp invariant

string field theory [2]. By taking the limit ǫ
(∆Y i)2

4π2 ∼
(

4π3

− ln ǫ

)
25−p

2
δ25−p(∆Y ) first in eq. (2.6),

one can find that eq. (A.18) turns out to take a form similar to that given in [14].
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